Surname	Centre Number	Candidate Number
Other Names		0

New GCSE

4462/02

SCIENCE A HIGHER TIER CHEMISTRY 1

A.M. WEDNESDAY, 18 January 2012

l hour

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1	7					
2	7					
3	6					
4	6					
5	6					
6	3					
7	7					
8	6					
9	6					
10	6					
Total	60					

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. (a) The following diagram shows an outline of the Periodic Table.

The letters shown are NOT the chemical symbols of the elements.

		_														
A																
												В		D		
	C					F										
																E
 (i) Give the letters of the elements that represent metals and those that represent no metals. Metals									: non- [1]							
			II.	State	ιp	group	and p	period	l to w	his el	emen	t belo	ngs.			[1] [1]

(b) The following table shows information about some of the elements in Group 7 of the Periodic Table.

Name of element	Symbol	Melting point / °C	Boiling point	Reaction with hot sodium
fluorine	F	-219	-188	explosive
chlorine	Cl	-101	-34	very vigorous
bromine	Br	-7	59	vigorous
iodine	I	114	184	slow

(i) Fluorine is a gas at room temperature, 20 °C. Give the states of bromine and iodine at room temperature. [2]

	State at room temperature
bromine	
iodine	

	Astatine is below iodine in this group of the Periodic Table. in the table to predict the properties of astatine.	Use the information [2]
•••••		

7

Turn over.

2. Rebecca was asked to investigate how the pH changed during the reaction between hydrochloric acid and potassium hydroxide. She slowly added potassium hydroxide solution to 25 cm³ of dilute hydrochloric acid and recorded the pH using a pH sensor. The results are shown in the graph below.

Volume of potassium hydroxide added / cm³

/ \ (*\ TT 41 1		•
(a) (1) Licotho growh	10	C1110
(a) (i) Use the graph	1()	PIVE
		5 · · ·

- I. the pH of the hydrochloric acid **before** adding potassium hydroxide, [1]
- (ii) Rebecca could also have investigated the pH change using universal indicator solution.
 - I. State the colour of universal indicator when the solution is neutral. [1]
 - II. Give **one** advantage of using a pH sensor to investigate changes in pH. [1]

<i>(b)</i>	Acids also react with bases such as copper oxide.							
	Describe how a pure sample of copper sulfate crystals can be prepared from copper oxide. [3]							
••••								
•••••								
••••								
• • • • • • • • • • • • • • • • • • • •								

4462 020005

3. The following diagram shows the 'periodic table' published by Dmitri Mendeleev in 1869.

I									
H 1.01	II	III	IV	V	VI	VII			
Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5		VIII	
K 39.1 Cu 63.5	Ca 40.1 Zn 65.4		Ti 47.9	V 50.9 As 74.9	Cr 52.0 Se 79.0	Mn 54.9 Br 79.9	Fe 55.9	Co 58.9	Ni 58.7
Rb 85.5 Ag 108	Sr 87.6 Cd 112	Y 88.9 In 115	Zr 91.2 Sn 119	Nb 92.9 Sb 122	Mo 95.9 Te 128	I 127	Ru 101	Rh 103	Pd 106
Cs 133 Au 197	Ba 137 Hg 201	La 139 TI 204	Pb 207	Ta 181 Bi 209	W 184		Os 194	Ir 192	Pt 195

The modern version of the Periodic Table is shown on the back page of this examination paper.

Describe how Mendeleev constructed his table and how it compares with today's Periodic Table. [6 QWC]

In your answer you should refer to

•	how Mendeleev arranged the elements in his table,
•	differences and similarities between the two tables.

•••••	 	 	

BLANK PAGE

(4462-02) **Turn over.**

4. (a) Hydrogen gas can be produced from water using electrolysis. The following diagram shows the apparatus that could be used in the laboratory to demonstrate the electrolysis of water.

Name gases A and B. Give the chemical test for each gas, giving the expected result in both cases. [3]

Gas A	
Gas B	
Test for gas A	
Test for gas B	

(b)	Hydrogen gas is used as a fuel. Give one advantage and one disadvantage of the hydrogen as a fuel.							
	Advantage							
	Disadvantage							

Another gas that can be used as a fuel is methane. Fill in the boxes to balance the (c) following symbol equation for the combustion of methane. [1]

$$CH_4 + \bigcirc O_2 \longrightarrow \bigcirc H_2O + CO_2$$

5. Crude oil is a mixture of compounds known as hydrocarbons. It can be separated into fractions using fractional distillation. The following table shows some properties of the main fractions collected.

Name of fraction	Carbon chain length range	Boiling point range
refinery gas	1 - 4	below 60
petrol		60 - 150
naphtha	8 - 12	150 - 200
kerosene	11 - 15	200 - 260
diesel	15 - 20	
lubricating oil	18 - 25	310 - 400
fuel oil	20 - 27	400 - 500
bitumen	above 35	above 500

(a)	Com	aplete the table to show	
	I.	the range of carbon chain length in petrol,	[1]
	II.	the boiling point range of diesel.	[1]
(b)	Give	e two reasons why the process of fractional distillation is important in everyday	y life. [2]
(c)		the information in the table to explain why each fraction is collected or perature range .	ver a [2]

6. Complete the following table by inserting the formulae of the missing ions and compounds.

You may find it useful to refer to the table of formulae of common ions printed inside the back page of this examination paper. [3]

Name	Formula of positive ion	Formula of negative ion	Formula of compound
sodium chloride	Na ⁺	Cl ⁻	NaCl
calcium fluoride			CaF ₂
sodium carbonate	Na ⁺	CO ₃ ²⁻	
magnesium hydroxide	Mg^{2+}	OH-	

7. Iron can be extracted from its ore in the blast furnace.

(a)	Explain why each of these materials is used in the blast furnance.	[3]
•••••		
•••••		•••••••

[1]

PMT

(b) One reaction that takes place in the blast furnace is shown below.

iron oxide + carbon monoxide → iron + carbon dioxide

(i) State which of the substances shown in the above equation is oxidised and which is reduced, giving reasons for your answers. [2]

(ii) Fill in the boxes to balance the symbol equation for this reaction. [1]

(c) Most of the iron produced is converted into an alloy called steel before use.

State what is meant by an alloy.

.....

8. Three groups of students used the apparatus shown in the following diagram to investigate how the electric current that a sodium chloride solution conducts depends on the concentration of the solution. Each group prepared their own sodium chloride solutions by dissolving carefully weighed samples of sodium chloride in 50 cm³ of water.

Their results are shown in the following table.

Grou	ıp A	Gro	ıp B	Group C			
Concentration / M	Current / A	Concentration / M	Current / A	Concentration / M	Current / A		
0.1	0.07	0.1	0.06	0.1	0.06		
0.2	0.14	0.2	0.12	0.2	0.13		
0.3	0.20	0.3	0.19	0.3	0.20		
0.4	0.28	0.4	0.26	0.4	0.27		
0.5	0.35	0.5	0.33	0.5	0.34		

(a)		Using the information in the table, describe the relationship between the concentration of the sodium chloride solution and the current that flows. [1]										
(b)		ag the information in the table, state whether the evidence supporting your conclusion art (a) is strong or weak, and give a reason for your answer. [1]										
(c)	(i)	Calculate the mean value for the current measured using sodium chloride solution with a concentration of 0.5 M. [1]										
	(ii)	Use the following formula to calculate the percentage variation in the current measured using this solution. $\frac{\text{(furthest value from mean value - mean value)}}{\text{mean value}} \times 100\%$ [2]										
	(iii)	Suggest a reason why each group obtained slightly different values for the current measured at this concentration. [1]										

9.	(a)	A student finds an unlabelled bottle containing a white powder. He suspects th powder may be either sodium carbonate, sodium chloride or sodium hydroxide.	
		Describe how the student could identify the substance. Your answer must include the expected observations for each substance.	[3]
	(b)	When a copper rod is placed in a solution of silver nitrate, a chemical reaction place as shown in the following photographs.	takes
		after 30 minutes	
		(i) Give a word equation for the reaction taking place.	[1]
		+ + + +	

10.	The Earth's original atmosphere contained mainly carbon dioxide and water vapour with smaller amounts of other gases such as methane and ammonia. Describe the formation of the
	original atmosphere and explain how it changed to its present-day composition. [6 QWC]

BLANK PAGE

FORMULAE FOR SOME COMMON IONS

POSITIV	VE IONS	NEGATI	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	$\mathrm{NH_4}^+$	Carbonate	CO_3^{2-}
Barium	Ba^{2+}	Chloride	Cl ⁻
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^{-}
Copper(II)	Cu ²⁺	Hydroxide	OH^-
Hydrogen	H^{+}	Iodide	Ι -
Iron(II)	Fe ²⁺	Nitrate	NO_3^-
Iron(III)	$\mathrm{Fe^{3+}}$	Oxide	O^{2-}
Lithium	Li^{+}	Sulfate	$\mathrm{SO_4}^{2-}$
Magnesium	Mg^{2+} Ni^{2+}		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	$egin{aligned} \mathbf{Ag}^{+} \ \mathbf{Na}^{+} \end{aligned}$		
Sodium	Na ⁺		

PERIODIC TABLE OF ELEMENTS

•	⁴ He	Helium	$^{20}_{10}\mathrm{Ne}$	Neon	$^{40}_{18}\mathrm{Ar}$	Argon	$^{84}_{36}\mathrm{Kr}$	Krypton	¹³¹ Xe	Xenon	²²² ₈₆ Rn	Radon					
_			19 F	Fluorine	35 CI	Chlorine	$^{80}_{35}\mathrm{Br}$	Bromine	1_{53}^{127} I	Iodine	$^{210}_{85}\mathrm{At}$	Astatine					
9			0 8 91	Oxygen	32 S 16 S	Sulfur	79 Se	Selenium	128 Te	Tellurium	²¹⁰ ₈₄ Po	Polonium					
w			N_{7}^{14}	Nitrogen	31 P	Phosphorus	75 As	Arsenic	122 Sb	Antimony	209 83 Bi	Bismuth					
4			12 C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn	Tin	²⁰⁷ ₈₂ Pb	Lead					
8			11 B	Boron	27 A1	Aluminium	70 Ga	Gallium	115 In	Indium	$^{204}_{81} { m Tl}$	Thallium				3	100
		'					$^{65}_{30}$ Zn	Zinc	112 Cd	Cadmium	²⁰¹ ₈₀ Hg	Mercury				Flement Symbol	ııt əyımı
							64 29 Cu	Copper	$^{108}_{47}\mathrm{Ag}$	Silver	¹⁹⁷ ₇₉ Au	Gold				– Fleme	
							$^{59}_{28}\mathrm{Ni}$	Nickel	106 P d	Palladium	195 Pt	Platinum				→ ×	1
	H_{l}^{l}	Hydrogen					⁵⁹ Co	Cobalt	103 Rh	Rhodium	$^{192}_{77}{ m Ir}$	Iridium			Ŀ	<u>√</u>	\ \rightarrow \rightarro
Group							⁵⁶ Fe	Iron	101 44 Ru	Ruthenium	190 OS	Osmium				<u>-</u>	ber —
Gre							55 Mn	Manganese	99 Tc	Technetium	¹⁸⁶ Re	Rhenium			•	Mass number	Atomic number
							52 24 Cr	Chromium	4o	enum	184 W	Tungsten		Key:	,	Mass	Aton
							52 24	Chro	⁹⁶ Mo	Molybdenum	184	Tun					
							$\begin{bmatrix} 51 \\ 23 \end{bmatrix} \mathbf{V} \begin{bmatrix} 52 \\ 24 \end{bmatrix}$	Vanadium Chro	$\frac{93}{41}$ Nb $\frac{96}{42}$ N	Niobium	¹⁸¹ Ta ¹⁸⁴	Tantalum					
									-								
							51 V	Scandium Titanium Vanadium	93 Nb	Yttrium Zirconium Niobium	¹⁸¹ Ta	Lanthanum Hafnium Tantalum	²²⁷ ₈₉ Ac	Actinium			
2			⁹ ₄ Be	Beryllium	$^{24}_{12}\mathrm{Mg}$	Magnesium	$\begin{vmatrix} 48 \text{ Ti} & 51 \text{ V} \\ 22 \text{ Ti} & 23 \text{ V} \end{vmatrix}$	Titanium Vanadium	$^{91}_{40}{ m Zr}$ $^{93}_{41}{ m Nb}$	Zirconium Niobium	179 Hf 181 Ta	Hafnium Tantalum	$^{226}_{88}\mathrm{Ra}$ $^{227}_{89}\mathrm{Ac}$				